The Effect of pH on Yellow Dyes from the Garden

 

yellows on line

First of all, I know that my well water is acidic. It measures about pH 6.0 here in the mountains of North Carolina.  The water is ideal for most dyeing. There is no iron or other minerals that might dull the colors. The acidity is another issue. 

Most of the yellow dyes in my garden, or those that I might gather locally, are flavonoids. That means that they require a mordant in order to attach to the textile. No mordant means no yellow. It’s that simple. Some of the dyes may also contain some tannin or other colorants but the yellow is what we’re talking about here. 

Last summer Joy Boutrup and I taught a class together at Penland School of Crafts, located near my home in western North Carolina. A student in the class was especially interested in gathering local plants for use as a dye source. She struggled to get the locally gathered dyes to attach to her textiles, especially onto mordanted cotton. 

Joy had the answer-of course!

When the dye meets the mordant in a textile, an insoluble lake is formed. This lake is formed most readily in neutral or slightly alkaline conditions.

An alum mordant makes a very strong bond with wool but there is no chemical bond between cellulose and the mordant.  Instead, the mordant is deposited as an insoluble compound on the textile.

An additional issue is that many of our local plants are acidic. When the plants are boiled in our already acidic water, the pH of the dyebath becomes so low that the dye may struggle to attach to the mordant in the fiber. In fact, the mordant in the cotton can be damaged or even removed if the bath is acidic enough. This is exactly the reason why we don’t add an acid to a cochineal bath when dyeing cellulose. The mordant would be damaged and little dye attaches. 

The remedy: Add a small amount of chalk (calcium carbonate) to the dye bath to neutralize the acid that is present. This will do no damage to the dye or the textile. Chalk is not an alkaline but will neutralize an acid that is present. Within reason, there is no possibility of having too much chalk and any excess will simply precipitate in the bath and rinse out of the fabric

Since my own broom (Genista tinctoria) is currently in need of a serious trim, I began a series of flavonoid dye tests with that and then compared other dyes from my garden and environs. 

I used all fresh plants at 300% w.o.f. and dyed both wool and cotton. The wool was mordanted in alum. The cotton was mordanted using tannin plus alum and soda ash. After making the dye decoction, I divided the dye bath in two equal portions and added both wool and cotton to each bath.  Chalk was added to only one of the baths.

The results were quite surprising (but also very consistent) and made me realize that I have likely not been achieving the maximum amount of color from some of my local dyes. 

The plants I gathered and used were

    • Broom (Genista tinctoria)
    • Wild grape leaves
    • Apple leaves
    • Dyer’s Chamomile (Anthemis tinctoria). I used the flowers and after gathering a basket of the small flowers I tested the dye content in the entire plant. 
    • Staghorn sumac (Rhus typhena) . We often think of sumac as a good source of tannin but the leaves, according to Dominique Cardon, are also rich in flavonoids. 
    • Weld (Reseda luteola). This is my “go-to” yellow dye. I almost always use dried plants and I rarely add chalk with weld on cotton but frequently  add it to a wool bath. 

After boiling the plant material I recorded the pH of the decoction. The pH was measured again after the addition of chalk. Each dye bath was approximately 4 liters and I added about 1 TBS of chalk. 

The chalk will alter the appearance of the bath from transparent to cloudy and nearly opaque. 

weld in pot w/wo chalk
Weld baths: no chalk on left, chalk added on right
plant pH after boiling pH after addition of chalk
Dyer’s broom 

(Genista tinctoria)

5 6
Wild grape leaves 4 6
Apple leaves 5 6.5
Dyer’s chamomile (Anthemis tinctoria) (flowers) 4.5 6.5
Dyer’s chamomile (Anthemis tinctoria) (whole plant) 4.5 6.5
Staghorn sumac (Rhus typhena) 4 6
Weld (fresh plant) (Reseda luteola) 5.5 6.5
Weld (dried plant) 5.5 6.5

The samples below are wool. Individual samples on the left had chalk added to the bath. Those on the right did not.

In every case, I achieved  deeper and brighter yellows colors when the chalk was added to the fresh plant baths. The only exception was dried weld, which was used at 50% w.o.f. When dyeing with the fresh weld plants, deeper yellow hues resulted with the addition of chalk. When I used dried weld plants, the chalk made very little difference.  I asked Joy about this and she indicated that is was possible that some of the acids disappear in the drying process. It will require more tests and explorations to confirm this.

The cellulose samples are especially notable. The high acidity of some baths made without the chalk was enough to damage the mordant significantly. The grape leaves and the sumac, which were the most acidic, destroyed the mordant in the cellulose and only the tannins that are present in the leaf were able to attach and color the fabric. 

 

cellulose no chalk
Palette of color on cotton without the addition of  chalk.  Left to right: Chamomile flowers, broom, apple leaves, chamomile (whole plant), weld, sumac, grape leaves
cellulose with chalk
Palette of color on cotton with the use of chalk.  Left to right: Chamomile flowers, broom, apple leaves, chamomile (whole plant), weld, sumac, grape leaves

If your water is not acidic, or has calcium in it, then these tests may not be relevant but the addition of chalk will never harm the fiber or the dye and may release more color.

I recently found the following note that I had made during a class with Michel Garcia several years ago referring to grape leaves:

“If they are too sour they will dissolve part of the mordant.”       M. Garcia

 My own notes continue to say:

After boiling the grape leaves the solution of a pH 4 – too acidic – it will remove the mordants. Sumac will cause the same effect. Boiling breaks the bonds of the tannins and gallic acid is released. Add chalk to the bath to decrease the acidity of the dye bath – you cannot be in excess of chalk.

Sometimes we’re just not ready to absorb information the first time we hear it. This is exactly why I continue to question, keep notes, and actively test and observe. 

It’s summertime! Enjoy your yellow flavonoids!

Note: I purchase my chalk from a potter’s supply store. It is inexpensive and can be purchased in quantity. Potters refer to it a “whiting” and rarely refer to it as chalk or calcium carbonate. Do check the MSDS though, just to be sure. 

Upcoming: On July 13 I am presenting a Zoom webinar, entitled Colors from the Garden, as part of the John C. Campbell Folks School’s Appalachian Traditions Series. You can sign up here:

 

 

Indigo Dyeing During Covid-19 Isolation

These last months, a time when I would usually be traveling and teaching, I have found myself  immersed in studio and garden. We are healthy and thankful for that. 

I am also grateful for the extended time to spend learning more about indigo fermentation. Over these last months I have made dozens of small test vats in the quest to better understand how the vats work and how to maintain them. These small vats have given way to a three 50 liter vats that are healthy and dyeing beautifully.

All of my vats use indigo pigment from Stoney Creek Colors, plus organic material to produce fermentation and thus, reduction. 

As part of the experimentation and study, I have successfully made my own wood ash lye and worked with both soda ash and potash as alternatives. All of these sources of alkalinity work with these vats. I have almost eliminated the use of lime, except as an occasional addition to adjust the pH.

Lye
Samples from the 6 batches of lye made from wood ash, ranging from pH 11.5-13.2.
sample vats
Sample indigo vats. Some are wrapped in electric heating pads in order to stay warm.

Each of the small indigo test vats (mostly 1 liter) are designed and made to answer a single question such as:

  • How long does it take a vat to go into reduction?
  • Does fresh ground madder root behave the same as “spent” madder root?
  • What is the effect of applying heat? 
  • How much heat?
  • Can soda ash be substituted for wood ash lye?
  • Can potash be substituted for soda ash?
  • Will “seeding” a new vat with a small amount from an older, reduced vat speed up the reduction process?
  • What is the effect of additional indigo plant material when added to the vat?
    • ground woad balls
    • dried Persicaria tinctoria leaves
    • patties made from Indigofera suffruticosa leaves
  • Can I make a fermentation vat without adding indigo pigment? All the indigo would then come from the plant material that also causes the fermentation. 
  • Can I leave a vat unattended for a week? 2 weeks? 3 weeks? how long?
  • What is the best way to get the vat back into a healthy reduction after it has been ignored and the reduction is weak or non-existent?
  • What is the best way to make a weak vat for pale hues?
  • Can a fermentation vat be done successfully using synthetic pigment? – I was not successful at this!

Small samples are dyed daily in the sample vats and I monitor  both the pH and the temperature of the solution. I also take note of both the vat surface and its smell. Once I feel “confident” that I have learned the lessons that each experiment has to teach me, I add the small vat to one the large ones. This replenishes the volume and adds some organic material.

indigo vat comparsion (1)
alkali comparisons

Making the first “large” vat took courage and a leap of faith. I now feel ready to double the size.

Several years ago I began growing small amounts of indigo in my garden, simply to understand it. I knew it would never be practical to extract my own indigo pigment. Now I have found an important use for even the small amounts of those fresh indigo leaves as source material for indigo balls or dried leaves to be added to the fermentation vats. 

Earlier this month I “attended” a “Zoom” talk by Aboubakar Fofana in which he talked about his own indigo practice. It was hosted by Botanical Colors.  I think it is well worth you time and now available online.

The indigo research and opportunities to attend virtual lectures have become possible because of this focused time at home. Now, it’s time to go back to the loom and prepare some woven shibori textiles for dyeing!

indigo vat comparsion
Four different values of indigo dye from the fermentation vat.
woven shibori shawl, made and donated to Penland School of Crafts annual auction
Woven shibori shawl, made and donated to Penland School of Crafts annual auction

Indigo: Still Learning, and at last….. Indigo Fermentation

The indigo chapter of the book Joy Boutrup and I wrote, The Art and Science of Natural Dyes (Schiffer Press),  focuses on the use of quick reduction vats that use iron, henna or sugar, along with lime (calcium hydroxide) to reduce the indigo. Since the book was published I have been very interested to learn more about indigo fermentation. The concept seemed daunting and I was hesitant to begin.

Why did I want to make a fermentation vat? 

Initially, I thought that the indigo crocking issues that I described in the last post might be solved by making a vat that did not use large quantities of lime. 

The vats that use large quantities of lime (calcium hydroxide) also seemed to be presenting a challenge with “fading” issues. I had fabrics that were not exposed to direct light,  but the exposure to air itself seemed to make the indigo fade in a very unattractive manner. I consulted with another experienced indigo dyer who was having this same issue with her vats and we suspected that the amount of lime in the henna and sugar vats was part of the problem. Textiles dyed in an iron vat do not seem to exhibit this type of fading, despite the high volume of lime.

 

And finally, and maybe most importantly, fermentation seemed like the ultimate in understanding indigo. It’s the oldest, traditional process where bacteria is used to reduce the indigo.  I wanted to experience it.

At the end of last summer, I made the commitment to begin working with a fermentation vat. Hisako Sumi, a friend, colleague, and indigo dyer from Japan, has been encouraging and coaching me through the process. 

I began with a simple recipe for a fermentation vat that was published online by Cheryl Kolander of Aurora Silks. The vat was made with 

    • indigo pigment 
    • ground madder root, the source of fermentation 
    • soda ash, to achieve the correct pH 

It worked! It took several days of warm weather (or some applied heat) and patience. The blue dye from the vat was clear and strong. Thank you, Cheryl.

Since that first vat I have made and maintained many small (1 or 2 liter) experimental vats.  I have a 30 liter vat that I have using regularly for several months and am now preparing to make a 150 liter vat for use with larger textiles. 

The Indigo dye

A typical fermentation vat in Japan is made using sukumo. Sukumo is composted indigo (polygonum tinctorium) leaves. The sukumo is both the source of the indigo dye and the source of bacteria that results in fermentation of the vat. I do not have access to sukumo  although I still have plans to make a small batch of sukumo.  I have been using organic indigo pigment from Stoney Creek Colors for all of my fermentation vats. 

Alkalinity

Fermentation vats do not require the high alkalinity that is necessary for the quick reduction vats, which perform best at a pH near 12.0. The fermentation vats require a pH between 9 -10.  I have made many fermentation vats since that first one, experimenting with various alkaline sources: wood ash lye that I leached from hardwood ash, soda ash, potash, and very small amounts of lime (calcium hydroxide) or lye (sodium hydroxide) to control the pH.  I have monitored the pH carefully.  In the first few days, when fermentation is beginning, the pH will go down.  

pH papers were not accurate enough to discern the pH fluctuations. I invested in a good pH meter, which I calibrate regularly. Because of the relatively low pH, the vat is suitable for both cellulose and protein fibers without fear of damaging the textiles. 

Organic material for fermentation

I used a very finely ground madder root powder from Maiwa in my initial experiments. I’ve been told that the freshness of the plant material matters for purposes of fermentation. Madder root was traditionally been used as a source of bacterial fermentation. Indigo dyers typically used madder root that had already been used for dyeing red. Once the red dyes have been extracted, the plant material is still a viable source for fermentation. 

Other sources of material for organic fermentation that I have used include: wheat bran (cooked for a few minutes in a little water) and dried, ground indigofera tinctoria leaves, which are sold as a hair dye (also called “black henna”). I was given a woad ball and added that to one of my vat experiments and it definitely speeded up the fermentation/reduction.

Traditionally, in England, woad balls were “couched”  or composted in order to extract both pigment and provide bacteria for fermentation – much like sukumo. When indigofera tinctoria was introduced from India, woad was used more often to boost fermentation, as opposed to being the primary source of dye.

Hisako encouraged me to use indigo plants from my own garden to to increase the source of bacteria for the vat. I grow small amounts of persicaria tinctoria, indigofera suffruticosa, and isatis tinctoria in the garden.  After grinding the fresh plant material, forming the balls or patties, they are dried for storage and added when needed to boost the fermentation of the vat.  I assume that once the plant material breaks down in the vat, it is also a minor source of indigo pigment but this is speculation. 

Natural fermentation vats have changed how my dye studio smells – no longer the sweet sugar or plant smell of the quick reduction indigo vat – but now the odor of true fermentation and rotting plant material. I’ve quickly gotten used to it and it is now the smell of a successful vat, though my husband finds the smell very offensive and avoids coming into the studio!

Temperature

The ideal temperature for fermentation is between 80-90°F (27-32°C). Think of the rising of bread dough! Warm climates are the natural environment to make and maintain these vats. In my North Carolina mountain dye studio (with no heat) it is more of a challenge. In Japan, I saw many large indigo vats wrapped in electric blankets. I use heating pads around my small one-liter and two-liter vats and a bucket warmer (used to keep honey in a liquid form) for the larger vat. To prevent the vat from getting too warm, I use a temperature controlling outlet with a thermostat and probe.  

Maintaining the Vats

I have been keeping careful records of these vats, sampling on a regular basis and documenting and recording any additions. Keeping good records is key to my understanding and confidence! 

IMG_6802

Every few weeks the vats are “fed” with a small amount of cooked wheat bran or a small amount of indigo balls or patties. 

The quick 1,2,3 reduction vats using sugar, fruit, or plants have introduced many of us to non-chemical reduction processes and made it possible for us to dye with indigo on a regular basis. They are accessible,  easy to make, and can be ready within a few hours, thus making them ideal for workshops and experiments. These vats have taught us the principles of indigo reduction and dyeing and I am forever grateful to Michel Garcia for teaching us about them.

For the long-term serious dyer, I  believe that the fermentation vats are a viable alternative. They require more time and attention but I have been surprised at how well these vats have tolerated neglect when I am away from the studio – sometimes for several weeks. When I go away, I turn off any supplemental heat, cover them, and just let them be. When I return home, I check the pH and adjust if necessary. Then I dye a test sample. If the color is weaker than when I last tested, I will “feed” them, stir, add some heat and wait a day before test dyeing again.  

The fading issue seems to be solved with the use of fermentation vats. I can’t say that I have completely solved the crocking issue, though I think that yarns dyed with the fermentation vat are crocking less.  Maybe this is just the nature of indigo… 

Indigo and Crocking

At this time last year, The Art and Science of Natural Dyes (Schiffer Press) was published. Joy Boutrup, my co-author, and I submitted the completed manuscript almost two years ago. During these last 24 months I have been teaching, traveling, and continuing to work in the studio. We have heard from many of you and appreciate that dyers are actively using the book. I’ve tried to respond to the numerous questions and comments that have come my way. 

I continue to learn, and plan to publish a series of posts that will reflect some of the lessons from the dye studio that have revealed themselves in the last months. 

Today I want to share issues with indigo and crocking. 

A couple of years ago, I took up knitting…once again. I dyed yarns in my 30 gallon indigo vat reduced with henna. This vat has been dyeing well for approximately 3 years.  I came directly in contact (no joke) with the crocking issues of indigo. Crocking occurs when excess dye rubs off onto another textile or on the skin.  My knitting yarns had been dyed well, neutralized, finished by boiling and yet still they crocked. Because of the handling of the yarns, knitting reveals rubbing issues that are easier to ignore with other dyeing projects. 

IMG_2641

crocking indigo
Testing for crocking is done by rubbing a small piece of white cotton 30x onto the textile.

This has started me on a long, involved exploration of indigo vats that has taken me in many directions. 

Indigo does not attach to the textile in the same manner as mordant dyes, so I think that some crocking is inevitable when dyeing with indigo but I wanted to see if we could decrease the amount of crocking on my yarns. 

I suspected that part of the problem was the high quantity of lime (calcium hydroxide) in the henna vat – or in any of the quick reduction vats. Joy also believed that the calcium binds to the indigo, making it more difficult to remove from the textile. 

The first thing we explored was a more thorough washing of the dyed textile.  Usually I finish all textile with a neutral detergent but a mild alkaline soap is particularly effective in removing excess dye. In order to be effective, the soap must be concentrated enough to foam up when heated. We soaked the indigo dyed textile in a mild “Ivory Soap” solution. We watched and saw that more of the excess indigo released from the textile in the soap solution than with a neutral detergent. The challenge when using soap is that it does not rinse out, leaving a fatty substance behind that would make mordanting and over-dyeing problematic. We used a heated Metaphos (phosphate) solution to remove the soap. But we saw no difference in the crocking after this treatment. 

soak and rinse water
soaking water with detergent (left) and soap (right)

Next, we experimented with substituting lye (sodium hydroxide) for the lime (calcium hydroxide) in both henna and iron vats. Joy determined the amount the lye required, based on the molecular weight. We substituted 1.3 grams of lye (sodium hydroxide) for 1 gram of lime (calcium hydroxide). 

We often think of lime as being benign because it can be purchased it in the grocery store as “pickling lime” but it is a very strong alkaline and we need to be careful with both of these substances.

While teaching at Penland School of Crafts last summer, Joy and I made two 5 gallon vats with the class, using lye with  henna and iron as reduction agents. Initially these vats worked very well and there was an added benefit with the lye: no calcium sludge in the bottom of the vat.

henna lye vat
“Rubbing cloths” indicated by dotted lines. The henna vat made with lye resulted in excellent rub-fastness.

 The vats made with lye seemed to significantly decrease the amount of crocking but I did find the these vats more challenging to keep in reduction for long periods of time than those made with lime. The pH had to be watched more carefully, as the henna vat would go out of reduction when the pH went below 12 and required boosting with more alkaline.  I do believe there is potential to make these “lye” vats work well, but my own follow-up experiments were done with small 2 liter vats and I never scaled these vats up. The truth is, I got distracted by fermentation vats, which have long been on my own list to explore. 

In my next post I will share some of what I have learned about fermentation vats. 

Coming up: The North Carolina Arboretum will host the third Growing Color Symposium in Asheville March 11 & 12, 2020. Presenters include Sally Fox, Sara Bellos, Donna Hardy, Rowland Ricketts, Dede Styles, and myself. Rowland and I will teach a workshop on the indigo vat and Sarah Bellos will be able to update us on Stoney Creek Colors and their indigo harvest and extraction. Donna Hardy will also do a post symposium workshop at Cloth Fiber Workshop. Do come if you can! 

Update on The Book – The Art and Science of Natural Dye

Yesterday I received a phone call from Schiffer Publications – the publisher of Joy’s and my upcoming natural dye book. 

I am sorry to report that the release date, originally projected for the end of October, has been delayed until late January.

Why the delay? 

Schiffer is taking great pains to be sure that all color reproduction is exact and precise. The book is illustrated with photos of actual samples from my dye tests. Our goal was to share some of the hundreds of samples that I have done, comparing the use of different mordants, tannins, dye treatments, times in the dyebath, etc. Many of the variations are subtle – but the differences are important.

Careful color adjustments have been made to the digital images in Art & Science of Natural Dye to ensure that the dye colors  reproduce as accurately as possible through  the print process. Color proofs are  reviewed and compared to the actual dye samples as part of this process.

Yes, it will be delayed, but the color will be the best possible printed reproduction and I’m very happy about that. It’s good to be working with a publisher that really cares about these “small” details – they are really not small at all. Below is just a small hint of what will be included. 

I know that many of you have pre-ordered the book and are anxiously awaiting it. Joy and I  appreciate the vote of confidence and are sorry for the delay.

I can suggest a great thing to do while you’re waiting: 

Yesterday, on a long drive back home from New England, I finally had the chance to listen to a lecture given by Michel Garcia and available as a Maiwa Podcast. It’s title is Field Notes in the Color Garden, parts 1 & 2. It’s a long, wonderful, rambling lecture that Michel gave in 2015 and Maiwa uploaded as a podcast this year.  It has given me much to think about in regards to dye plants, resource books, investigation, and the human scale of natural dye. 

And keep dyeing!

It’s still less than a year since Joy and I turned in the manuscript and images to the publisher. My learning has not stopped and once the book is released, I look forward to sharing some of the things I’ve continued to work on and learn about since we sent the manuscript away.  “Stay tuned”.

Catharine

What We Call Things

While in Oaxaca, Mexico, a friend gave me a small bag of dried dye material. She had obtained it from dyers in the Teotitlan Valley. It was identified locally as “Mexican chamomile”. It was very aromatic and easy to believe that it was a type of chamomile, possibly related to dyer’s chamomile (Anthemis tinctoria), also known as know as golden marguerite.

I wanted to compare this “Mexican chamomile” with the chamomile I had at home. I had dried chamomile flowers from Maiwa and some whole plants from the end of the season in my garden. Both of them were Anthemis tinctoria.

img_9756
Dry and fresh dye materials

I dyed mordanted wool fabric with all three of these “chamomiles” and achieved very different results. Both of the known chamomile dyes produced in a soft, predictable yellow color while the Mexican “chamomile” produced in a much deeper, richer tone. When I completed lightfast tests on the three samples, the Mexican chamomile actually deepened in hue, which led me to believe that it contained a tannin. I guessed that it might not actually be chamomile.

chamomile
Fresh chamomile (Anthemis tinctoria), Maiwa dried chamomile flowers (Anthemis tinctoria), Mexican chamomile (Tagetes lucida)
chamomile-1
Lightfastness tests. Right side was exposed to direct sun for 3+ weeks.

After reporting these results to the friend who had given me the dye, she told me the plant had another local name: “pericon”. Once I knew this, it was easy to identify the plant in both Tintes y tintoreros de América by Ana Roquero and Plantes Tintóreas de Guatemala by Olga Reiche. Both of these are excellent dye books, written in Spanish.

The dye plant in question was Tagetes lucida, a type of marigold. The entire plant is used for dyeing, which explains the presence of tannin in the dye. The whole plant is likely to contain tannins while the flowers alone would not.

tageteslucida244
Tagetes lucida,  Wikipedia photo

I have located sources of seed for this plant. The seed companies also refer to it as “Mexican tarragon”, “sweet smelling marigold”, and “Mexican mint marigold”. The leaves are a savory herb and can be used as a substitute for tarragon.

I bring all this up to emphasize the importance of using Latin names for our dye plants. Local names are only useful to local people. I understand that there is a great deal of emphasis on the use of local plants for dyeing but as we travel and meet dyers from other places it becomes important to talk about our process in a common, international language.

While in Mexico I took a workshop on plant taxonomy with Alejandro de Ávila at the Botanical Gardens in Oaxaca. I marvel at the incredible system of plant names that can be understood around the world and encourage dyers to get into the habit of using the Latin names for plants.

I will grow Tagetes lucida (or “Mexican chamomile”, or “pericon” or Mexican tarragon” or “sweet smelling marigold” or “Mexican mint marigold”) in my garden this year and think about the Teotitlan dyers who gather it wild and use in their weavings.

p1090601
Jacobo and Maria Luisa Mendoza, Teotitlan weavers and natural dyers in their home studio, with Rocio Mena Gutierrez

 

Book is out! & Teaching at Penland

 

FullSizeRender (3)
On the shelf at the Penland Supply Store – photo by Debra Frasier

Woven Shibori has been printed and is on the shelves of your favorite bookseller (also available at Amazon).  I had some of the first copies delivered to me while teaching natural dye with Joy Boutrup at Penland School of Crafts. It was a fitting place to receive the first books. Joy has helped me over the years to understand the chemistry of natural dyes, various finishing processes, and textiles in general. I could not have completed even the first version of Woven Shibori without her input.

ellis-boutrup-4

Catharine and Joy at Penland  –  photo by Robin Dreyer

I love teaching at Penland! The studios are beautiful, thoughtfully cared for, and well supplied.  Our students were fabulous and ready for whatever we brought to class. We focused on experiments, observations, and clarifications. The class worked with all natural fibers, and processes included dyeing, printing, and discharge. We were focused on WHY things happen rather than simply how they are done.

Every time I teach with Joy, I  walk away feeling that I’ve taken a  a class as well. We learn from each other as we solve problems, observe results, and identify the best practices for the studio.

This slideshow requires JavaScript.

So here is one of the things that FINALLY became clear to me.

I’ve heard/read for years that if animal hide glue was added to the indigo vat, then it would be better for wool or other protein fiber. But WHY? That had never been explained. Did the glue coat the fiber in some way?

The organic sugar vats, that I learned to make from Michel Garcia, use sugars from fruit or plants to create the reduction. Lime (calcium hydroxide) provides the alkalinity.

The vat begins with a quick reduction that eventually becomes a fermentation vat. These vats require a very high pH (about 13-14) in order to start the reduction. If the pH is too low the vat will not reduce. But it does not need a high pH to stay in reduction or for dyeing. A pH of 10 is more suitable for dyeing wool, while cellulose fibers do better with a higher pH of 11. The vat will eventually get to a pH 10 as the sugars create lactic acid in the fermentation but this could take a long time. I’ve had vats take weeks to reach pH 10.

photo by Robin Dreyer
Indigo!  – photo by Robin Dreyer

The addition of dissolved animal hide glue (a protein) to the vat will gently lower the pH by absorbing some of the excess lime. The glue will precipitate to the bottom of the vat along with unreduced indigo and sugars. Joy also suggested using natural gelatin (another protein) as an alternative to the glue but we did not have a chance to try this.

It’s very important to insure that the vat is fully reduced before adding anything that will lower the pH. I would wait at least a few days after making the vat before doing this.

I’ve had dyers tell me that the addition of the glue does indeed improve the hand of wool fibers. How much glue? I’m not sure. We started by using a recommendation by Michelle Whipplinger  in her Natural Dye Instruction Booklet. She suggests using the equivalent of approximately 1%  fiber weight. The glue needs to be dissolved in water.  That seemed a reasonable place to start. The key is to watch the pH and observe with both the eye and the hand.

Woven Shibori and Teaching Natural Dyeing

The new edition of Woven Shibori, (Interweave Press) – with a focus on natural dyes – is at the printers right now and will be available by late June! It’s exciting to see the cover and the layout complete. I first wrote Woven Shibori in 2005 and it sold out several years ago. The book has introduced weavers to the concepts and specifics of weaving fabric with woven resist patterning. When the book was originally written I was using many different types of synthetic dyes and layering them in order to accomplish rich color surfaces.

WovenShibori_Revised_FrontCover

I have now been using natural dyes exclusively for 8 years. My challenge was to develop methods of resisting, mordanting, mordant discharging, and cross dyeing  to create unique fabrics that have all the elements I love: texture, color, woven structure, and always some surprises. The natural dye palette and processes not only rival, but I think surpass, the effects I was achieving with synthetic dyes.

Last week I taught a class on cotton printing with natural dyes at Cloth Fiber Workshop in Asheville. I was reminded once again why I teach and why I have written this book. It is gratifying to work with people who are curious, skilled (or not), and eager to learn more. The students in my classes keep pushing me to increase my own knowledge, to better understand what I do know, and to clarify my reasons for working with natural dye.

zce 2 (1)
Class photos from Cloth Fiber Workshop by Barbara Zaretsky

I would not be the dyer I am today without my own teachers and mentors. Michel Garcia of France and  Joy Boutrup of Denmark have been guiding influences. They are both curious and knowledgable and have inspired me to continue down this path. Michel and Joy are also generous teachers. None of us can do this by ourselves.

Although Woven Shibori includes lots of technical information about weaving fabrics for shibori, the dye information should be of interest to anyone who combines resist techniques with natural dye on their cloth.

 

Why I Switched from Synthetic to Natural Dyes

The Surface Design Association News Blog just published a piece I wrote on dyeing.  Here is the link. The transition from synthetic to natural dyes and ingredients took some time, a lot of thought, and some real determination. I have reached the point of no return…..

IMG_8409
Sodium hydrosulfite or thioruea dioxide was both the reduction agent for indigo/vat dyes and a discharge agent for fiber reactive dyes. Now I use plants and sugars to reduce the indigo vat and citric acid or lemon juice to discharge mordants.

More thoughts on Natural Dye and Cultural Exchange in China…

Yoshiko I. Wada wrote the follow comment in response to the latest blog post. She was a very important part of this experience and I thought her words, with  additional insight,  deserved their own spot and thus the following:

“This is a friend of Catharine’s, Yoshiko I. Wada from slowfiberstudios.com and naturaldyeworkshop.com, where we re-blog Catharine’s blog in our Dye Nerds’ Blog. Since the person in charge of our blog is on vacation until the end January and I was g Japanese to English translator for Dr. Yamazaki I am jumping in for some additional thoughts and information.

The Jinze Art Centre in Shanghai and Slow Fiber Studios in Berkely, CA organized the workshops with Japanese masters working with my colleague Edith Cheung who is in charge of the textile program there.

P1070455
Yoshiko Wada and Edith Cheung in Jinze Town.

RE: Camellia ash (椿灰汁) since the Asuka Period (538 to 710 ) and Nara Period (AD 710 to 794) documents recorded that the Japanese dyers used the liquid strained from the camellia ash as a vehicle to shift pH and at the same time to access its alum as a mordant. Camellia is a plant which is called bio-accumulator of aluminum similar to symplocos, lycopodium and miconia. Those plants have been used as mordants in Southeast Asia, northern Europe, and Mexico respectively. The anthology of poems Man’yōshū 万葉集 literally means “Collection of Ten Thousand Leaves” contains many poems associating with purple colors (murasaki) and gromwell roots (shikon) and madder as well as camellia ash. The collection contains poems ranging from AD 347 (poems #85–89) through 759 (#4516), the bulk of them representing the period after AD 600.

image1
Gromwell on silk

Catharine: At the bottom is the love poem by Princess Nukata I told you about. And it starts with madder (akane) as a pillow word but scene is the gromewll field (known to belong to Tenchi Emperor). Murasaki is purple and the plant was a precious medicinal herbs. From the poem, the guarded field may have hosted wild gromwell plants like the Super Gromwell Roots that Edith found in Hong Kong where herbalist told her “only the very best is found in Hong Kong.”

image3
Purple Gromwell roots (Arnebiae radix)

The wild purple roots were so strange looking compared to the ones imported from China that Dr. Yamazaki uses in Japan that it gave him such worries during the class. He thought after making the students knead the soaked roots for 2 hours on their knees on the floor, only grey pale purple is achieved.

On the contrary, we achieved the most beautiful purple even with limited time we had to process it all. Did he mention that in his studio, he kneads the roots a few times in the morning and some more in the afternoon to get maximum colorants from the plants? And he repeats dyeing, middle mordanting, and dyeing, many times in a few days to get saturated deep purple? He did say the purple dye extracted in this way has much more complexity and depth than the easy extraction with alcohol.

Yoshiko I. Wada

P1070308
Gromwell on silk with extraction by kneading and camellia ash mordant

茜さす紫野行き標野(しめの)行き野守(のもり)は見ずや君が袖振る 額田王(ぬかたのおおきみ).

訳)茜色を帯びる紫草が生い茂る(天智天皇の御料地である)野を行き,貴方は袖を振る.野守りが見とがめはしないでしょうか?